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Abstract. We investigate the Yang–Lee edge singularity on non-planar random graphs, which
we consider as the Feynman diagrams of variousd = 0 field theories, in order to determine the
value of the edge exponentσ .

We consider the hard dimer model onφ3 andφ4 random graphs to test the universality of
the exponent with respect to coordination number, and the Ising model in an external field to
test its temperature independence. The results here for generic (‘thin’) random graphs provide
an interesting counterpoint to the discussion by Staudacher of these models on planar random
graphs.

1. Introduction

The work of Yang and Lee [2, 3], later expanded by various other authors [4], on the
behaviour of spin models incomplexexternal fields has provided an important paradigm
for the understanding of the nature of phase transitions. In brief, Yang and Lee observed that
the partition function of a system above its critical temperatureTc was non-zero throughout
some neighbourhood of the real axis in the complex external field plane. AsT → Tc+
the endpoints of loci of zeros moved in to pinch the real axis, signalling the transition.
When such endpoints occur at non-physical (i.e. complex) external field values they can be
considered as ordinary critical points with an associated edge critical exponent. The picture
was later extended by Fisher to temperature driven transitions by considering the analyticity
properties of the free energy in the complex temperature plane [5].

A few equations to expand on this would not go amiss. On a finite graphGn with n
vertices the free energy of an Ising-like spin model can be written as

F(Gn, β, z) = −nh− ln
n∏
k=1

(z− zk(β)) (1)

where the fugacityz = exp(−2h), andh is the (possibly complex) external field. Thezk(β)
are the Yang–Lee zeros, which in the thermodynamic limit form dense sets on curves in the
complexz-plane. In the infinite-volume limitn→∞ the free energy per spin is

F(G∞, β, z) = −h−
∫ π

−π
dθ ρ(β, θ) ln(z− eiθ ) (2)

whereρ(β, θ) is the density of the zeros, which can be shown to appear on the unit circle in
the complexz-plane in the Ising case (the Yang–Lee circle theorem). ForT > Tc or, if one
prefersβ < βc, there is a gap withρ(β, θ) = 0 for |θ | < θ0, and at these edge singularities
we have

ρ(β, θ) ∼ (θ − θ0)
σ (3)
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which defines the Yang–Lee edge exponentσ . This also impliesM ∼ (θ − θ0)
σ . Various

finite-size scaling relations relate the Yang–Lee exponent to the other critical exponents [6]
and can be used in numerical determinations of critical behaviour [7].

The Yang–Lee circle theorem of [2, 3] guarantees that the roots of the partition function
of the Ising model on a fixed graphGn lie on the unit circle, but it does not guarantee that
this should be the case when the partition function is defined by a sum over some class of
random graphs for eachn

Zn =
∑
Gn

Z(Gn) (4)

whereZ(Gn) is the partition function on a given graph in the class. This is the case for
models of two-dimensional (2D) quantum gravity, where the sum is over planarφ3, φ4, . . .

random graphs, and in this paper where we will will consider a sum over thin,non-planar
random graphs†. The work of Staudacher [1] showed that, nonetheless, the zeros did appear
on the unit circle for planar graphs, which has recently been confirmed by numerical finite-
size scaling investigations using both series expansions and Monte Carlo simulations by
Ambjørn et al [8].

In this paper we will consider a partition function of the form of equation (4) for thin
random graphs. Spin models on such thin random graphs are of interest because they
provide a way of investigating mean-field effects thanks to their tree-like local structure
[9]. The advantage of using the thin random graphs in such investigations over genuine
tree-like structures such as the Bethe lattice‡ [10] is that boundary effects are absent. The
complications of being forced to consider only sites deep within the lattice which occur
on the Bethe lattice are thus absent. The motivation for this work is the calculation of
the exponentσ for thin random graphs and the testing of its universality. The calculation
of the edge exponent in the Ising model context also allows us to check its temperature
independence. A mean-field value forσ (i.e. 1

2) would demonstrate that the mean-field
nature of critical behaviour on such random graphs models extended to complex couplings.

We shall use the approach of [12, 13] to solve both the hard dimer model and the Ising
model itself in a complex external field. The requisite ensemble of thin random graphs
is generated by considering the scalar limit of a matrix model. In all cases the partition
function of equation (4) is given by an integral of the form

Zn ×Nn = 1

2π i

∮
dλ

λ2n+1

∫ ∏
i dφi

2π
√

detK
exp(−S) (5)

whereK is the inverse of the quadratic part of the actionS, theφi are the fields which give
the appropriate decoration of the graph, andλ is the vertex coupling. The factorNn counts
the number of undecorated graphs in the class of interest, and generically grows factorially
with n. A given graph appears as a particular ‘Feynman diagram’ in the expansion of
equation (5) and the integration overλ picks out graphs with 2n vertices. The couplingλ
is irrelevant for the discussion of critical behaviour as it may be scaled out of the action
and hence any saddle-point equations. In the largen limit the integral in equation (5)
may be evaluated by saddle-point methods. Phase transitions appear when an exchange
of dominant saddle-points occurs, either continuously giving a second-order transition, or
discontinuously giving a first-order transition. The saddle-point integrals which appear are

† We shall call such graphs ‘thin’ random graphs throughout this paper as they appear as the scalar limit of the
matrix fatgraphs that are relevant for discussions of 2D gravity.
‡ At the risk of some confusion we call the treewith boundary the Bethe lattice. This is sometimes given the
name of ‘Cayley tree’ and Bethe lattice is reserved for the purely internal points.
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the d = 0 equivalent of those in instanton and large-order calculations in field theory [14–
16]. As we are taking ann → ∞ limit at the start of our calculations, we are unable to
explicitly calculate zeros on finite lattices and verify the Yang–Lee circle theorem. However,
we shall see that the endpoints of the loci of zeros do lie on the unit circle in the complex
fugacity plane.

One important property of the Yang–Lee edge exponentσ in all the models examined
so far is that it is independent ofβ (for β < βc). It is therefore possible in general to obtain
a quick and dirty determination of its value for Ising models by taking the so-called hard
dimer limit, which corresponds toβ → 0, h → iπ

2 , and has certain simplifying features
compared with the general case. We shall calculate the edge exponent for the hard dimer
model onφ3 andφ4 random graphs in the next section. A calculation of the exponent for the
Ising model proper can be found in section 2, this will investigate whether the temperature
independence still holds.

2. Hard dimer models

The partition function of the hard dimer model on a given graph is defined [17] by

2(Gn) = 1+
e(Gn)∑
i=1

θn(i)ζ
i (6)

whereζ is a dimer activity andθn(i) is the number of ways of placingi dimers on thee(Gn)

edges of the graphGn such that at most one dimer is attached to each vertex (hence ‘hard’).
Precisely this expression appears in taking the limitβ → 0, h→ iπ

2 in the high-temperature
series for the Ising model partition function. The role ofh in the definition of the edge
singularity exponent is taken byζ and we have

d2

dζ
∼ (ζ − ζ0)

σ (7)

where2 is the appropriaten→∞ limit of 2(Gn). For both planar and thin random graphs
we are interested in a sum

2n =
∑
Gn

2(Gn) (8)

and in [1] the appropriate two-matrix integral to generate the dimer partition function onφ3

andφ4 planar graphs was written down. For thinφ3 graphs the required action for insertion
into equation (4) is

S = 1
2(x

2+ y2)− 1
3x

3−
√
ζyx2 (9)

where thex propagators represent the unoccupied links and they propagators the dimers.
The two vertices are shown in figure 1. The

√
ζ weight appears because each end of the

dimer contributes a
√
ζyx2 vertex. We have scaled outλ for clarity. Similarly forφ4 graphs

we find

S = 1
2(x

2+ y2)− 1
4x

4−
√
ζyx3. (10)

The saddle-point equations∂S/∂x = ∂S/∂y = 0 for both equations (9) and (10) can be
easily solved. Concentrating on theφ3 case for simplicity, we find

x = −1±√1+ 8ζ

4ζ
y = 1− x

2
√
ζ

(11)
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Figure 1. The two vertices in theφ3 dimer
model, with the dimer edge drawn in bold.
(a) Carries a weight ofλ

√
ζ and (b) carries a

weight of λ/3.

so the resulting saddle-point action is

S = 1

192ζ 3

(
12ζ − 8ζ

√
1+ 8ζ + 24ζ 2+ 1−

√
1+ 8ζ

)
. (12)

We can see that the saddle-point solution presents a singularity at a negative value,ζ0 = − 1
8.

The free energy is given by the logarithm of the action to leading order in 1/n, so we would
expect an inverse square root divergence atζ0 when we differentiate lnS twice if σ were
equal to its mean-field value of12. This is, indeed, the case. Writingζ = − 1

8 + ε and
expanding we find

∂22

∂ζ 2
∼ ∂2 ln S

∂ζ 2
∼ 96
√

2√
ε
. (13)

As y appears at most quadratically in equation (9) an alternative approach† is to integrate
it out to obtain the action

S = 1
2(x

2+ y2)− 1
3x

3− 1
2ζx

4 (14)

which has the saddle-point solution

x = −1±√1+ 8ζ

4ζ
(15)

and displays an identical divergence∼ 96
√

2/
√
ε at ζ0 = − 1

8 to equation (13). The
geometrical picture of such an integration on they variables is that all the dimers are
collapsed to give newx4 vertices and assigned the appropriate weight. Whichever way the
calculation is carried out, the appearance of the square-root divergence confirms thatσ = 1

2,
which is the mean-field value of the edge exponent.

The universality of the result with respect to the coordination number of the vertices
can be confirmed by solving the saddle-point equations for equation (10), which we do not
reproduce here, or by integrating outy to give

S = 1
2(x

2+ y2)− 1
4x

4− 1
2ζx

6 (16)

which has the saddle-point solution

x =
√
−1±√1+ 8ζ√

6ζ
(17)

† Also taken in [1] for the planar case in a matrix model calculation.
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leading to the saddle-point action

S = 1

432

(−1+√1+ 12ζ
) (

24ζ + 1−√1+ 12ζ
)

ζ 2
. (18)

When expanded around the singularity atζ0 = − 1
12 it also gives a square-root divergence

∂22

∂ζ 2
∼ ∂2 ln S

∂ζ 2
∼ 36
√

3√
ε
. (19)

The exponentσ is thus seen to be independent of the coordination number of the random
graphs (three and four forφ3 andφ4 graphs, respectively) on which the dimers are placed.

The hard dimer calculation represents a determination of the edge exponent at one point
on the (h, β) plane. We now turn to the solution of the Ising model in an external field in
order to confirm this value for generic points on the singularh(β) line.

3. The Ising model in an external field

The action for the Ising model onφ3 graphs in an external field may be written as

S = 1
2(x

2+ y2)− cxy − 1
3ehx3− 1

3e−hy3 (20)

where c = exp(−2β). The transition point in the model is determined by solving the
saddle-point equations∂S/∂x = ∂S/∂y = 0 and then using these solutions to determine at
which point the Hessian of the second partial derivatives is zero [11]. This will pick up
any continuous transitions that are present. The net result of these (lengthy) calculations is
the following formula forh(c), the curve in theh, c plane along which the Hessian is zero

exp(h(c)) = ±
√

2c(1+ 18c2− 27c4± (1− 9c2)
√

1− 10c2+ 9c4)

4c
. (21)

It is perhaps worthwhile to consider the solution in the zero external field at this point
for orientational purposes. In that case we have at high temperatures

x = y = 1− c (22)

which bifurcates in a mean-field magnetization transition atc = 1
3 to the low-temperature

solutions

x = 1+ c +√1− 2c − 3c2

2

y = 1+ c −√1− 2c − 3c2

2

(23)

valid for c < 1
3. The distinguished role of the zero-field critical pointc = 1

3 is clear in
equation (21). Exp(h(c)) develops an imaginary part forc > 1

3 (in the high-temperature
phase) and if we plot its modulus as in figure 2 we can see clearly that| exp(h(c))| = 1 for
c > 1

3. This shows that the endpoints, at least, of the line of zeros lie on the unit circle.
Without explicit finite-size calculations, or simulations of the model in a complex field in
the style of [8] we cannot say that the zeros lie on the unit circle, but it is reasonable to
conjecture that they do, just as for planar graphs.

Extracting the critical exponent from the magnetization turns out to be the easiest
proposition for the Ising model in a field. The expression for the magnetization in this
case is

M(exp(h)) = ehx3− e−hy3

ehx3+ e−hy3
(24)
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Figure 2. The modulus of exp(h) along the Yang–Lee transition line forc > 1
3 can be seen to

be one.

and it is directly related to the density of zeros on the unit circle by

ρ(θ) ∼ lim
→1−

ReM(reiθ ). (25)

We proceed by substituting the saddle-point solutions forx, y in field that led to
equation (21) into equation (24) before taking the limit in equation (25) above. The positions
of the critical endpoints on the unit circle can be extracted by examining the discontinuities
in the resulting expression, and are given by

θ0(c) = ±1

2
tan−1

(
(9c2− 1)

√
1− 10c2+ 9c4

1+ 18c2− 27c4

)
(26)

which is also consistent with equation (21) for exp(h). The endpoints can be seen to move
in to pinch the real axis,θ0 → 0± as c → 1

3+, confirming the Yang–Lee picture of the
transition.

An expansion of the density of zeros aroundθ0 for genericc still rapidly degenerates
into considerable, and not very illuminating, algebraic complexity. However, fixingc and
examining various points along the critical line in equation (21) reduces the level of difficulty
to that of the hard dimer calculations in the previous section. For any given value ofc > 1

3,
we do indeed find thatρ(θ) ∼ (θ − θ0(c))

1/2 by using equation (25). In figure 3 the density
of zeros squared is plotted againstθ−θ0(c) for c = 1

3 giving a straight line, which confirms
the square-root nature of the singularity. A similar conclusion follows other values ofc > 1

3.

4. Discussion

Both the hard dimer calculations and those for the full Ising model in an external field
produce the mean-field value for the edge exponent. Given the body of previous results in
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Figure 3. The density of zeros squared (suitably scaled for plotting convenience) is plotted
againstθ for c = 1

3 (θ0(
1
3) = 0). The straight line demonstrates the square-root nature of the

singularity.

[11] showing mean-field behaviour in various models on random graphs (and the observation
in the first of [11] that the saddle-point equations in the mean-field models were identical
in content to the recursion relations used to solve the models on trees) this is no great
surprise, though it does provide the first confirmation that the mean-field critical behaviour
on random graphs extends to critical phenomena at complex couplings. The inherent
simplicity of the saddle-point equations for random graphs made obtaining expressions
for the singular behaviour and the position of the critical endpoints a simple task in the
hard dimer model and also allowed for a demonstration of universality by examining both
φ3 and φ4 graphs. The solution of the Ising model in field was rather more forbidding,
and we have not presented many of the resulting elephantine equations here, but it was
still possible to give a simple demonstration by seminumerical means thatσ = 1

2 along the
critical curve.

We have also seen that for the Ising model the singular endpoints of the line of zeros
stay on the unit circle in the complex fugacity plane, which provides support for the Yang–
Lee circle theorem with partition functions of the form in equation (4) that involve sums
over thin random graphs. This naturally leads to the conjecture that all the Yang–Lee zeros
lie on the unit circle for the Ising model on thin random graphs, just as on planar graphs,
which could be confirmed by a finite-size scaling analysis for the thin random graph model
in the manner of that carried out in [8] for planar graphs. Another possible extension of
this work would be to consider the Fisher zeros in the model by examining the behaviour
in the complex temperature plane.

Indeed, a more comprehensive investigation of complex phases for various spin and
vertex models on both planar and non-planar random graphs, in the manner of that carried
out by Matveev and Shrock [18] for regular lattices, might prove illuminating. In particular,
it would be interesting to see if the complex temperature and complex field singularities with
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atypical (and lattice-dependent) exponents found in [18] had their counterparts in random
graph models.
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Baillie C and Johnston D 1996Nucl. Phys. B (Proc. Suppl.)47 649
Baillie C, Dorey N, Janke W and Johnston D 1996Phys. Lett.B 369 123

[12] Bachas C, de Calan C and Petropoulos P 1994J. Phys. A: Math. Gen.27 6121
[13] Whittle P 1992Adv. Appl. Prob.24 455

Whittle P 1989J. Stat. Phys.56 499
Whittle P 1990Disorder in Physical Systemsed G R Grimmett and D Welsh p 337

[14] Brezin E, Le Guillou J and Zinn-Justin J 1977Phys. Rev.D 15 1544
Brezin E, Le Guillou J and Zinn-Justin J 1977Phys. Rev.D 15 1558
Parisi G 1977Phys. Lett.66B 167

[15] Lipatov N 1976JETP Lett.24 157
Lipatov N 1976Sov. Phys.–JETP44 1055
Lipatov N 1976JETP Lett.25 104
Lipatov N 1977Sov. Phys.–JETP45 216

[16] Coleman S 1977Phys. Rev.D 15 2929
Callan C and Coleman S 1977Phys. Rev.D 16 1762

[17] Gaunt D 1969Phys. Rev.179 174
[18] Matveev V and Shrock R 1995J. Phys. A: Math. Gen.28 1557

Matveev V and Shrock R 1995J. Phys. A: Math. Gen.28 4859
Matveev V and Shrock R 1995J. Phys. A: Math. Gen.28 5325
Matveev V and Shrock R 1995J. Phys. A: Math. Gen.28 L533
Matveev V and Shrock R 1995Phys. Lett.A 204 353
Matveev V and Shrock R 1996J. Phys. A: Math. Gen.29 803
Matveev V and Shrock R 1996Phys. Rev.E 53 254



The Yang–Lee edge singularity on Feynman diagrams 5649

Matveev V and Shrock R 1996Phys. Lett.A 215 271
Matveev V and Shrock R 1996Phys. Rev.E 54 6174
Matveev V and Shrock R 1996Phys. Lett.A 221 343


